(36) Hand Motions
Hand motions are the secrets to technique acquisition and experimentation. When watching a concert pianist, most technical hand motions are not discernible. They are too small and fast so that most of the visible motions are exaggerations or irrelevant to technique unless you know what to look for. The hand motions: parallel finger [(9) Parallel Sets (PSs), Conjunctions, Cycling], (21) Forearm Rotation, [(30) Thumb Under, Thumb Over, Glissando Motion, Pivoting], [(32) Arpeggio, Cartwheel Motion, Finger Splits], and wrist snap [(34) Fast Octaves, Small/Big Hands] have already been discussed.
All finger motions must be supported by the major muscles of the arms; there is no such thing as moving one finger -- any finger motion involves the entire body. Hand motions are discussed only briefly here; for more details, consult the references: Fink or Sándor, and Mark for anatomy.
Pronation and Supination: There are two bones in the forearm, the larger radius, connecting to the thumb, and the smaller ulna, connecting to the pinky Mark, Thomas,. The ulna is held in position by the upper arm. The hand is rotated by rotation of the radius against the ulna; this causes the thumb to move more than the pinky, and is the main motion for playing the thumb. The downward rotation of the thumb is called pronation and the upward rotation is called supination.
Wrist Motion: The general wrist rule is to raise the wrist for the pinky and lower it to play the thumb. This is not a hard rule; there are plenty of exceptions, because practically every motion is a combination of motions. By combining wrist motion with pronation- supination, you can create rotary motions for playing repetitive passages such as LH accompaniments, or the first movement of Beethoven's Moonlight Sonata (RH). The wrist can be moved up or down, and side-to-side. Every effort should be made such that the playing finger is parallel to the forearm; this is accomplished with the side-to-side wrist motion. This configuration puts the least amount of lateral stress on the tendons moving the fingers and reduces the chances of injuries such as Carpal Tunnel Syndrome [(60) Injury, Health]. Habitual playing (or typing) with the wrist cocked at a sideways angle can cause injury. A loose wrist is also a prerequisite for total relaxation. Most students think of a supple wrist as one that moves up and down freely, but the sideways motion is the more important, and difficult one to cultivate. When sitting low, the wrist can also be turned sideways rapidly using forearm rotation; this could be one reason why some famous pianists sit so low.
Knowing how to slide the fingers will let you play with confidence even when the keys are slippery or if they get wet from perspiration. Never depend on the friction of the key surface to play the notes because it will not always be there for you and it can lead to stress and injure the finger tip. Depending on friction is one of those bad habits that can cause numerous problems. Raising the wrist will cause the fingers to slide towards you during the key drop. Lowering the wrist will cause the fingers to slide away. Practice each of these sliding motions with all five fingers. With a stationary wrist, the fingers will not slide, even if the keys are slippery! Better still, sliding fingers will never be problematic; in fact, sliding the fingers is another technical skill that should be practiced (see claw below).
For controlling the friction between fingers and keys, most moisturizers (Lubriderm, Eucerin) can work wonders, but it will take some experimentation before you can learn to use them properly. Firstly, you need to apply a sufficient amount for it to work. But you need to wait for at least several minutes for all that moisturizer to be completely absorbed into the skin; otherwise it will wipe off on the keys and make them slippery. Even after complete absorption, any moisture on the skin, such as perspiration, will make the fingers very slippery.
Thrust and Pull: Thrust is a pushing motion, towards the fallboard, usually accompanied by a slightly rising wrist. With curved fingers, the thrust motion causes the vector force of the hand moving forward to be directed along the bones of the fingers. This adds control and power. It is therefore useful for playing chords, but it can cause injury. The pull is a similar motion away from the fallboard, and does not cause injury. In these motions, the total motion can be larger than the vector component downward (the key drop), allowing for greater control. Thrust is one of the main reasons why the standard finger position is curved. Try playing any large chord with many notes, first lowering the hand straight down and then using the thrust motion. You may get superior results with the thrust compared to straight down. Pull is useful for some legato and soft passages. Thus, when practicing chords, always experiment with adding some thrust or pull. Thrust and pull use different sets of muscles; thus fatigue can be reduced by switching between them.
Claw and Throw: Claw is moving the fingertips into the palm (increasing curl) and throw is the opposite: opening the fingers to their straighter positions. In addition to moving the fingertips up and down, they can also be moved in and out to play. These motions add greater control, especially for legato and soft passages, as well as for playing staccato. Like the thrust and pull, these motions allow a larger motion with a smaller keydrop. Thus, instead of always trying to lower the fingers straight down for the key drop, try experimenting with some claw or throw action to see if it will help. Note that the claw movement is much more natural and easier to conduct than a straight down. The straight down motion of the fingertip is a complex combination of a claw and a throw. The flat finger playing can be considered as one form of claw.
Flick: The flick is a quick rotation followed by counter- rotation of the hand; a fast pronation-supination combination, or its reverse. We saw that parallel sets can be played at any speed. When playing fast, connecting parallel sets becomes a problem. One solution is the flick, especially when the thumb is involved, as in scales and arpeggios. Single flicks can be conducted extremely quickly with zero stress. However, quick flicks need to be "re-loaded"; i.e., continuous fast flicks is difficult. For connecting parallel sets, the flick can be used to play the conjunction and then be re-loaded during the parallel set.