(16) Human Memory Function
Memory consists of two functions, storage and recall.
Storage: everything we experience is stored in temporary memory and then transferred to permanent memory, an automatic process that takes about 5 minutes, where it is stored practically for life. Savants that can remember everything indefinitely provide the best proof that memory is permanent. The approximately 5 minute transfer time has been verified innumerable times from records of head trauma victims: they can remember only up to about 5 minutes before the trauma incident; we saw an example of this from the survivor of Princess Diana's fatal accident – Trevor Rees-Jones, could not remember the accident or the few minutes prior to it.
My hypothesis for human memory is that information is stored in a "memory field" in various areas of the brain. The memory is not at any specific location, but is distributed in many areas of the brain, like a holograph. In computer memory, each memory has an address, so we know how computers recall memory. Brain memories do not have addresses, so how does the brain recall memories?
Recall: When we memorize, storing the information is not a problem because it is automatic and basically permanent — recalling is the problem because, unlike a computer in which all data have addresses, human memory is retrieved by a complex process that is not yet understood. My hypothesis is that the recall process is an association process, and the most obvious associative process is an overlap of memory fields. That is, when two related memories are stored, their memory fields overlap; the closer the relationship, the greater the overlap and the easier the recall. With time, however, more such overlaps will be stored so that the brain must search through more overlaps. The probability of confusion increases with time because the probability that the brain will choose the wrong overlap increases as the number of overlaps increases. Therefore, our inability to recall is caused by confusion, not by loss of memory.
Memory is most easily recalled if the memory is associated with something easy to remember, such as outrageous, funny, familiar, etc., associations, because the brain is attracted to them. This is the most common trick used by good memorizers.
The system of memory fields is complex because it is continually modified by the brain. One modification is the creation of abstractions called abstracts here. The abstract "airplane" does not exist outside the brain, but is created in memory and includes everything from toy paper planes to the largest jumbo jets. This creates an additional, artificial, association among objects. Abstracts are generalized objects and they enable thought processes and languages. Thus we are generally dealing with memory fields of abstracts, not the original memory fields from external inputs such as visual, auditory, touch, smell, taste, etc., because the external inputs are like continuous movies with too much information. Abstracts simplify them into manageable objects. Thus the human memory is not a passive memory like the computer disk, but is an active processor of incoming information into simpler abstracts that are more manageable. However, because there are savants that can recall all the original data, those data are apparently also stored in the brain.
This memory-field-overlap recall process is similar to a basic phenomenon in quantum mechanics. The probability of an electron emitting a photon is given by the overlap of the electron and photon wave functions mediated by the emission function. Therefore the human memory recall process may be mimicking a basic process in nature. This mimicking is common: electrons orbit atom nuclei, planets orbit the sun, and stars orbit black holes in galaxies. The most advanced theory of cosmology posits that the universe is made up of strings so small that nobody can see them; thus the piano strings making music emulates string theory that creates the universe.
There is little question that memory is associative . We memorize music by associating it with things we already know. If you ask a musician to memorize a full page of random music notes, he will have great difficulty memorizing even a single page because he has nothing with which to associate random notes. This musician will have no trouble memorizing a 20 page sonata quickly because the sonata has melodies, rhythm, etc., that are familiar. This is why there is no better way to memorize music than by using music theory. All you have to do is to associate the music with the theory and you have it memorized. Although music theory memory is the best, it is not equally helpful to everybody because most students do not know enough theory.
The strongest evidence for the associative nature of human memory comes from tests on good memorizers who can perform incredible feats such as memorizing hundreds of telephone numbers from a phone book. These good memorizers all use associative algorithms for memorizing. The algorithms are different for each person, but they are all devices for associating the objects to be memorized with something that have patterns that are already in memory.
For example, for remembering hundreds of numbers, one algorithm is to associate a sound with each number. The sounds are chosen such that they form "words" when strung together, not in English, but in a new "language" (algorithm) that is created for that purpose. Japanese is a language with such a property. For example, the square root of 2 is 1.41421356 which can be read as a phrase that translates roughly to, "good people, good people are worth looking at" (hitoyo-hitoyoni-hitomigoro), and the Japanese routinely use such algorithms to remember such things as telephone numbers. To 7 decimals, the square root of 3 reads "Treat the entire world!" and the root of 5 reads "On the 6th station of Mt. Fuji, an owl is crying"; I learned these 60 years ago and still remember them.
The amazing thing is the speed with which good memorizers can map the object to be memorized onto their algorithms. Super memorizers develop after much hard work in perfecting their algorithms and practicing every day, just like pianists. This "hard work" comes effortlessly because they enjoy it.
Let's try one sample algorithm. Suppose that you want to memorize the sequence of 14 numbers 53031791389634. One way to do it is to use something like the following story: "I woke up at 5:30 AM with my 3 brothers and 1 grandmother; the ages of my brothers are 7, 9, and 13, and my grandma is 89 years old, and we went to bed at 6:34 PM." This is an algorithm based on life's experience, which makes the random numbers "meaningful". What is so intriguing is that the algorithm contains 132 letters, yet it is much easier to remember than the 14 numbers because of familiar associations. You can easily test this for yourself. First memorize both the 14 numbers (if you can -- it is not easy for me) and the above algorithm. Then 24 hours later, try to write down the numbers from memory and from the algorithm; you will find the algorithm to be much better. There are even better algorithms that you can readily find on the internet.
Because of the huge information processing power of the brain, the retrieval process is more efficient if there are more relevant associations and the number of these associations quickly increases in size as more items are memorized because they can be cross-associated. Therefore the human memory is almost diametrically opposite to the computer memory: the more you memorize, the easier it becomes to memorize because you can create more associations; each new association provides numerous new possible routes for recall. Thus everything we know about memory tells us that exercising our memory will strengthen it.
Memory is an important component of consciousness , which might be defined as a series of looping brain functions: inputs → memory → conclusions → action → inputs, etc., that form a perpetual loop.
Newborn babies have few items in memory and therefore cannot form associations. Their consciousness increases as the brain develops. As a result, they can not think or communicate initially except to make noises in response to their needs. In just a few years, they have enough associations to learn languages and to think. At this stage, they learn very quickly because the brain is developing rapidly, but for the same reason, they also forget quickly. Their intelligence may appear to be low because they can have difficulties memorizing from a lack of associations; however, they are capable of understanding complex concepts quickly. If the memory is maintained into the teen years, myelin sheaths begin to form around axons, thus locking the memory permanently. Thus repertoire memorized and maintained before the twenties is almost never forgotten.
Even the youngest youngsters can appreciate and memorize music. Practically any pianist can easily memorize several Beethoven sonatas or an equivalent length of music they love. From the point of view of data bits, each sonata represents over 1,000 telephone numbers. Thus practically all pianists can memorize the equivalent of over 10 pages of phone numbers – something that would be considered miraculous if they were phone numbers.
Therefore, what concert pianists achieve is not that different from what those "genius memorizers" do. Proper instructions on how to memorize makes this "miracle" achievable for everyone.